Part Number Hot Search : 
CX2VCSM1 DSW22201 815SR X150FG ADP2116 MLX902 LH1524 29F200
Product Description
Full Text Search
 

To Download AOL1436 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AOL1436 N-Channel Enhancement Mode Field Effect Transistor
General Description
The AOL1436 uses advanced trench technology to provide excellent R DS(ON), shoot-through immunity and body diode characteristics. This device is ideally suite for use as a High side switch in CPU core power conversion. Standard Product AOL1436 is Pb-free (meets ROHS & Sony 259 specifications).
Features
VDS (V) = 25V ID = 50A (VGS = 10V) RDS(ON) < 6m (VGS = 20V) RDS(ON) < 8.2m (VGS = 12V) RDS(ON) < 11.5m (VGS = 10V) UIS Tested! Rg,Ciss,Coss,Crss Tested!
Ultra SO-8TM Top View D
Fits SOIC8 footprint !
D
S
Bottom tab connected to drain G
G
S
Absolute Maximum Ratings T =25C unless otherwise noted A Parameter Symbol VDS Drain-Source Voltage VGS Gate-Source Voltage Continuous Drain TC=25C G B Current TC=100C ID C Pulsed Drain Current IDM Continuous Drain TA=25C A Current TA=70C C Avalanche Current Repetitive avalanche energy L=0.3mHC Power Dissipation Power Dissipation
B
Maximum 25 30 50 48 120 20 16 28 118 43 22 5 3 -55 to 175
Units V V A
IDSM IAR EAR PD
A A mJ W W C Max 25 55 3.5 Units C/W C/W C/W
TC=25C TC=100C
TA=25C PDSM TA=70C Junction and Storage Temperature Range TJ, TSTG Thermal Characteristics Parameter A t 10s Maximum Junction-to-Ambient A Steady-State Maximum Junction-to-Ambient Steady-State Maximum Junction-to-CaseD
A
Symbol RJA RJC
Typ 20 46 2.5
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOL1436
Electrical Characteristics (T J=25C unless otherwise noted) Parameter Symbol STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS IGSS VGS(th) ID(ON) Zero Gate Voltage Drain Current Gate-Body leakage current Gate Threshold Voltage On state drain current Conditions ID=250A, VGS=0V VDS=20V, V GS=0V TJ=55C VDS=0V, VGS= 30V VDS=VGS ID=250A VGS=12V, V DS=5V VGS=20V, ID=20A RDS(ON) Static Drain-Source On-Resistance VGS=12V, ID=20A VGS=10V, ID=20A TJ=125C gFS VSD IS Forward Transconductance VDS=5V, ID=20A Diode Forward Voltage IS=1A,V GS=0V Maximum Body-Diode Continuous Current 2 120 5 6.6 8.6 11 43 0.72 1 50 1100 VGS=0V, VDS=12.5V, f=1MHz VGS=0V, VDS=0V, f=1MHz 420 200 0.8 20 VGS=10V, V DS=12.5V, ID=20A 17 6.5 6.8 9.5 VGS=10V, V DS=12.5V, R L=0.68, RGEN=0.6 IF=20A, dI/dt=100A/s IF=20A, dI/dt=100A/s 13.5 11.5 5.4 32 19 nC nC ns ns ns ns ns nC 1.5 24 1350 6 8.2 11.5 3.2 Min 25 1 5 100 4 Typ Max Units V A nA V A m m m S V A pF pF pF nC
DYNAMIC PARAMETERS Ciss Input Capacitance Coss Crss Rg Output Capacitance Reverse Transfer Capacitance Gate resistance
SWITCHING PARAMETERS Qg(12V) Total Gate Charge Qg(10V) Total Gate Charge Qgs Qgd tD(on) tr tD(off) tf trr Qrr Gate Source Charge Gate Drain Charge Turn-On DelayTime Turn-On Rise Time Turn-Off DelayTime Turn-Off Fall Time Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge
A. The value of R JA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25C. The Power dissipation P DSM is based on t<10s R JA and the maximum allowed junction temperature of 150C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175C may be used if the PCB allows it. B. The power dissipation P D is based on T J(MAX)=175C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature T J(MAX)=175C. D. The R JA is the sum of the thermal impedence from junction to case R JC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 us pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=175C. The SOA curve provides a single pulse rating. G. The maximum current rating is limited by bond-wires. H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25C. Rev1: Jan 2007
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOL1436
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
120 20V 100 80 ID(A) 60 40 20 0 0 0 2 3 4 VDS (Volts) Figure 1: On-Region Characteristics 1 5 4 5 6 7 8 9 VGS(Volts) Figure 2: Transfer Characteristics VGS=8V 20 10V 60 12V ID(A) 40 VDS=5V 80
125C 25C
10.0 9.0 8.0 RDS(ON) (m) 7.0 6.0 5.0 4.0 3.0 2.0 0 5 10 15 20 25 30 VGS=20V VGS=12V VGS=10V Normalized On-Resistance
1.6 ID=20A VGS=20V
1.4
1.2 VGS=10V
VGS=12V
1
VGS=10V VGS=12V VGS=20V
0.8
0.6 -50 -25 0 25 50 75 100 125 150 175 Temperature (C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+02
ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage
18
ID=20A
1.0E+01 1.0E+00
14 RDS(ON) (m)
TC=100C
10
TA=25C
IS (A)
1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05
125C
125C
25C
6 25C 2 8 10 12 14 16 18 20 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage
-55 to 175
0.0
0.4 0.6 0.8 VSD (Volts) Figure 6: Body-Diode Characteristics
0.2
1.0
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOL1436
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
20 18 16 14 VGS (Volts) 12 10 8 6 4 2 0 0 5 15 20 25 30 Qg (nC) Figure 7: Gate-Charge Characteristics 10 35 1600 VDS=12.5V ID=20A Capacitance (pF) 1400 1200 1000 800 600 400 200 0 0 15 20 25 VDS (Volts) Figure 8: Capacitance Characteristics 5 10 30 Crss Coss Ciss
1000.0 100.0 ID (Amps) 10.0 1.0 0.1 0.0 0.01 T J(Max)=175C T C=25C RDS(ON) limited 100ms DC 10s 100s
140 120 100 Power (W) 80 60 40 20 0.0001 T J(Max)=175C T C=25C
0.1
1 VDS (Volts)
10
100
Figure 9: Maximum Forward Biased Safe Operating Area (Note F)
0.01 0.1 1 10 Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
0.001
100
10 D=T on/T T J,PK =T c+PDM.ZJC.RJC RJC=3.5C/W 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
ZJC Normalized Transient Thermal Resistance
TC=100C TA=25C
0.1 PD
-55 to 175
T on Single Pulse T
0.01 0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOL1436
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100 ID(A), Peak Avalanche Current Power Dissipation (W) 0.001 T A=25C 80 60 40 20 0 0.00001 150C 25C 50 40 30 20 10 0 0.0001 0 25 50 75 100 125 150 175 TCASE (C) Figure 13: Power De-rating (Note B)
Time in avalanche, t A (s) Figure 12: Single Pulse Avalanche capability
60 50 Current rating ID(A) 40 30 20 10 0 0 25 50 75 100 125 150 175 TCASE (C) Figure 14: Current De-rating (Note B)
100
80 Power (W)
60
40
20
0 0.001
0.1 1 10 100 1000 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
0.01
10 ZJA Normalized Transient Thermal Resistance In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 1
0.1 D=T on/T T J,PK =T A+PDM.ZJA.RJA RJA=55C/W 0.001 0.01 0.1 1 PD T on T 100 1000
0.01 Single Pulse 0.001 0.00001
0.0001
10
Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com


▲Up To Search▲   

 
Price & Availability of AOL1436

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X